TRW

Space & Technology Division

Microwave Photonic Signal Processing for Wide Bandwidth Systems

DARPA Analog Optical Signal Processing Study Group

Larry Lembo and John Brock
TRW Space and Technology Group
Redondo Beach, CA
December 6, 2000

Advances in Solid State Electronics Enabling Systems at Higher Frequency

New Activity Reported in Janes 1997 Radars and ELINT Systems

So Much Bandwidth, So Little Time

- Typical High Performance ESM Architecture
- Channelized Acquisition Receiver
 - 500 MHz to 1 GHz Bandwidth
 - 50 MHz Channels
- Cued Measurement Receiver
 - 4 to 5 Interferometer Channels
 - 50 MHz Bandwidth
- Desired Detection / Measurement Time < 2 sec.

Dwell Time ~ 50 msec. / subband / sector:

- Time To Search 2 to 18 GHz With 500 MHz Rx. = 50 x 4 x 32 = 6.4 sec
- Time To Search 2 to 40 GHz With 500 MHz Rx. = 50 x 4 x 76 = 15.2 sec
- Time To Search 2 to 90 GHz With 500 MHz Rx. = 50 x 4 x 176 = 35.2 sec

Need: Increased Acquisition Receiver Bandwidth

Photonics Offers Viable Wideband Processing Capability

Time-Domain Processing

• Large (10³) time-bandwidth products.

Frequency-Domain Processing

 10 -100 GHz front-end channelizer bandwidths demonstrated.

Wide Band, High Fidelity Signal Routing TRW

Optical Channelizer as Signal Preprocessor for Wideband Warning Receiver

Optical Channelizer Performance

Two-Tone Spur-Free Dynamic Range

/ / /	Measured SFDR into 3kHz noise BW	SFDR-BW product	Calculated SFDR-BW product	/ / 7
/ / /	82dB	105.2dB Hz ^{2/3}	108.0dB Hz ^{2/3}	/ /

Single-Channel Frequency Response

Signal spot width is 3x local oscillator spot width Intermediate frequency, IF = 6 GHz

Photonic Time Domain Processing

Four Tap Processor Filtering

Photonic Image Reconstruction

Optical Correlation Offers Significant Size, Weight, Power Advantages

Imaging Sensor Total Weight Estimates

Block	Electronic (kg)	Photonic/Electronic (kg)	Photonic (kg)
Antenna	31.8	31.8	31.8
Receiver	2.1	2.1	2.1(1)
Local Oscillator	7.8	7.8	0.0
Elec.Processor	119.2	0.0	0.0
Phot. Processor	0.0	22.3	22.3
Subtotal	160.9	64.0	56.2
Structure (50%)	80.5	32.0	28.1
Total	241.4	96.0	84.3

Note: (1) Mixers are not required but amplifiers are.

Imaging Sensor Total Power Estimates

Block	Electronic (W)	Photonic/Electronic (W)	Photonic (W)
Antenna	1176.0	1176.0	1176.0
Local Oscillator	162.8	162.8	0.0
Elec.Processor	1725.4	0.0	0.0
Phot. Processor	0.0	78.0	78.0
Total	3064	1416.8	1254

Summary

- Technology will continue to "broaden" the useful RF spectrum
- We have spectrum processing problems today that are really hard and will only get harder
- Photonics can be a part of the solution
 - as a preprocessor to reduce load on downstream electronics
 - in some cases as the processor itself